skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Iqbal, Sheikh_Muhammad Asher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cardiovascular diseases are a leading cause of death worldwide. They mainly include coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular diseases can be better managed and diagnosed using wearable devices. Wearable devices, in comparison to traditional cardiovascular diagnostic tools, are not only inexpensive but also have the potential to provide continuous real-time monitoring. This paper reviews some of the recent advances in cardiovascular wearable devices. It discusses traditional implantable devices for cardiovascular diseases as well as wearable devices. The different types of wearable devices are categorized based on different technologies, namely using galvanic contact, photoplethysmography (PPG), and radio frequency (RF) waves. It also highlights the use of artificial intelligence (AI) in cardiovascular disease diagnostics as well as future perspectives on cardiovascular devices. 
    more » « less
  2. Cardiovascular disease is one of the leading causes of death in the world. Heart failure is a cardiovascular disease in which the heart is unable to pump sufficient blood to fulfill the body’s requirements and can lead to fluid overload. Traditional solutions are not adequate to address the progression of heart failure. Herein, we report a body-mounted wearable sensor to monitor the parameters related to heart failure. These include heart rate, blood oxygen saturation, thoracic impedance, and activity status. The device is compact and wearable and measures the parameters continuously in real time. The device is an Internet of Things (IoT) device connected with a cloud-based database enabling the parameters to be visualized on a mobile application. 
    more » « less